Structure/function analyses of human serum paraoxonase (HuPON1) mutants designed from a DFPase-like homology model.

نویسندگان

  • David T Yeung
  • Denis Josse
  • James D Nicholson
  • Akhil Khanal
  • Christopher W McAndrew
  • Brian J Bahnson
  • David E Lenz
  • Douglas M Cerasoli
چکیده

Human serum paraoxonase (HuPON1) is a calcium-dependent enzyme that hydrolyzes esters, including organophosphates and lactones, and exhibits anti-atherogenic properties. A few amino acids have been shown to be essential for the enzyme's arylesterase and organophosphatase activities. Until very recently, a three-dimensional model was not available for HuPON1, so functional roles have not been assigned to those residues. Based on sequence-structure alignment studies, we have folded the amino acid sequence of HuPON1 onto the sixfold beta-propeller structure of squid diisopropylfluorophosphatase (DFPase). We tested the validity of this homology model by circular dichroism (CD) spectroscopy and site-directed mutagenesis. Consistent with predictions from the homology model, CD data indicated that the structural composition of purified HuPON1 consists mainly of beta-sheets. Mutants of HuPON1 were assayed for enzymatic activity against phenyl acetate and paraoxon. Substitution of residues predicted to be important for substrate binding (L69, H134, F222, and C284), calcium ion coordination (D54, N168, N224, and D269), and catalytic mechanism of HuPON1 (H285) led to enzyme inactivation. Mutants F222Y and H115W exhibited substrate-binding selectivity towards phenyl acetate and paraoxon, respectively. The homology model presented here is very similar to the recently obtained PON1 crystal structure, and has allowed identification of several residues within the enzyme active site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico analyses of substrate interactions with human serum paraoxonase 1.

Human paraoxonase (HuPON1) is a serum enzyme that exhibits a broad spectrum of hydrolytic activities, including the hydrolysis of various organophosphates, esters, and recently identified lactone substrates. Despite intensive site-directed mutagenesis and other biological studies, the structural basis for the specificity of substrate interactions of HuPON1 remains elusive. In this study, we app...

متن کامل

VX Hydrolysis by Human Serum Paraoxonase 1: A Comparison of Experimental and Computational Results

Human Serum paraoxonase 1 (HuPON1) is an enzyme that has been shown to hydrolyze a variety of chemicals including the nerve agent VX. While wildtype HuPON1 does not exhibit sufficient activity against VX to be used as an in vivo countermeasure, it has been suggested that increasing HuPON1's organophosphorous hydrolase activity by one or two orders of magnitude would make the enzyme suitable for...

متن کامل

Purification and characterization of functional human paraoxonase-1 expressed in Trichoplusia ni larvae.

Human serum paraoxonase-1 (HuPON1) is difficult to either purify from plasma or functionally express in high yield from recombinant sources. Here, we describe the characterization of functional HuPON1 expressed and purified from Trichoplusia ni (T. ni) larvae infected with an orally active form of baculovirus. SDS-PAGE and anti-HuPON1 Western blot analyses yielded only three bands of approximat...

متن کامل

Dramatic differences in organophosphorus hydrolase activity between human and chimeric recombinant mammalian paraoxonase-1 enzymes.

Human serum paraoxonase-1 (HuPON1) has the capacity to hydrolyze aryl esters, lactones, oxidized phospholipids, and organophosphorus (OP) compounds. HuPON1 and bacterially expressed chimeric recombinant PON1s (G2E6 and G3C9) differ by multiple amino acids, none of which are in the putative enzyme active site. To address the importance of these amino acid differences, the abilities of HuPON1, G2...

متن کامل

Solubilization and Humanization of Paraoxonase-1

Paraoxonase-1 (PON1) is a serum protein, the activity of which is related to susceptibility to cardiovascular disease and intoxication by organophosphorus (OP) compounds. It may also be involved in innate immunity, and it is a possible lead molecule in the development of a catalytic bioscavenger of OP pesticides and nerve agents. Human PON1 expressed in E. coli is mostly found in the insoluble ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1702 1  شماره 

صفحات  -

تاریخ انتشار 2004